If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t^2+3t-11=0
a = 8; b = 3; c = -11;
Δ = b2-4ac
Δ = 32-4·8·(-11)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-19}{2*8}=\frac{-22}{16} =-1+3/8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+19}{2*8}=\frac{16}{16} =1 $
| 8t^2T3t-11=0 | | 10(10x-9)=710 | | w^2+7w-638=0 | | 320=-8(-5x+10) | | (y-6)/2=(3-24)/5 | | 26(3y-9)=3(22y+3) | | -220=-10(7x-20) | | 1/1/2(n)=6 | | (5/8)x+14=-11 | | (5/8)t+14=-11 | | -553=7(5x-14) | | (x+2)^2=2x^2-x+8 | | 15+0.5p=3p | | 2x+7(2×-6)=-17-9× | | Y=6/5x+6 | | (5y+3)+(2y-5)=180 | | -376=8(5x-7) | | (3x-4)+(x-2)=62 | | 2x+x/3=-14 | | 5–2=x | | 410=5(7x+5) | | 6(2x-1)=3(2x+4)-10 | | 2x+8/4=2 | | (0)-(-9)=x | | x+3x+(3x-45)=180 | | 2x+8/4=2+ | | x+3x+(3x+45)=180 | | (-8)-(+7)=x | | x+3x+3x+45=180 | | 2x+4(x)=400 | | 4x-13-1=3x-5 | | 36(47x+35-46x-71=-99 |